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Analytical calculation of the Peierls-Nabarro barriers for the Remoissenet-Peyrard
substrate potential
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We derive analytically the pinning potential and the pinning barrier of kinks due to discreteness of lattices
for the Remoissenet-Peyrard substrate potential by means of the residue method. The theoretical analysis in the
low discreteness effect regime is compared in detail with numerical results of Peyrard and Remoissenet@Phys.
Rev. B26, 2886~1982!#, yielding a very satisfactory agreement.
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I. INTRODUCTION

The influence of lattice discreteness on the properties
nonlinear systems having kink solutions was investigated
several authors@1–4#. These studies have pointed out a lar
variety of effects, including modification of soliton velocit
and its form and leading sometimes to the pinning of
soliton on the lattice. In certain systems such as incomm
surate systems@5,6#, the discreteness effects bring not only
quantitative change with respect to the continuum model
also a qualitative change: the discrete lattice causes the
tortion in the incommensurate phase to be both modula
and pinned to the lattice, preventing a truly incommensur
phase from arising and causing the appearance of a ga
the phason spectrum@5#. Note that except for some numer
cal investigations@7# and the approximated investigation
@8,9# on the deformable sine-Gordon potential of Remoi
enet and Peyrard@10#, the discrete models that were used
describe domain walls, incommensurate systems, or ad
tems were restricted to the discretized version of thef4 and
sine-Gordon~sG! models@11–13#.

However the deformable potential of Remoissenet a
Peyrard plays an important role in atomic chains. Its use
the present work is dictated by our effort to go beyond
mathematical problem and obtains results that may be us
for real materials that undergo structural changes such
shape distortions, variations of crystalline structures, or c
formational changes in some of their physical paramet
Such materials cannot be satisfactorily described by subs
potentials with constant parameters, for which much w
has already been done in the context of their dynamical
havior. Also it is important to note that the Remoissen
Peyrard substrate potential has been used to describe d
sion of adatoms@14# as a model for reconstructive surfac
growth @15#, and to describe the complicated exchang
mediated diffusion mechanism@16#. It has also been used t
calculate the diffusion coefficient of adsorbates in meta
substrates@9# and the nucleation rate of kink-antikink pairs
low temperature@17#. Finally, the deformable spin mode
Hamiltonian has been recently introduced@18#, to name only
a few.

Our aim in this paper is to derive the exact analytic
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result of the pinning potential, the well-known Peierl
Nabarro ~PN! potential, in the Remoissenet-Peyrard~RP!
model @10#, in the limits where dressing corrections of th
kink profile are negligible. This parameter is very importa
for many physical applications in which nonlinear excit
tions are invoked to describe real systems. We recover
behavior predicted numerically by Peyrard and Remoisse
@7#. The results are presented here in the context of dislo
tion theory but they are also applicable to many other phy
cal systems outlined in the preceding paragraph. We
present the basic results of the continuum model in Sec
and second, in Sec. III, we use the reduced Lagrangian
proach to derive the equation of motion for the center
mass of the kink. The PN barrier is also calculated. Fina
Sec. IV is devoted to concluding remarks.

II. MODEL DESCRIPTION

To begin, let us consider a system of particles of masm
harmonically coupled and placed on an infinite on
dimensional~1D! lattice of spacinga. The system is gov-
erned by the discrete Lagrangian

L5T2U, ~1!

where the kinetic and potential energies are, respectiv
given by

T5Aa(
i

1

2
f i

2 ~2!

and

U5Aa(
i

H C0
2

2a
~f i 112f i !

21v0
2V~f i !J , ~3!

where the overdot indicates the time derivative. The cons
A'ma sets the energy scale of the system, andC0 andv0
are characteristic velocity and frequency, respectively.f i is
the scalar dimensionless longitudinal displacement of thei th
particle on a 1D lattice. The nonlinear ‘‘one-site potentia
V(f i) is an external potential, representing the combin
influence of the surrounding crystal or macromolecu
©2002 The American Physical Society06-1
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and external effects, such as an electric or magnetic field.
concentrate our attention on that introduced by Remoiss
and Peyrard~RP! @10#,

V~f i !5~12r !2
12cosf i

11r 212r cosf i
, ~4!

whereur u,1. As r varies, the amplitude of the potential re
mains constant with degenerate minima 2pn and maxima
(2n11)p, while its shape changes. Atr 50, the model re-
duces to the well-known sG model.

In the continuum soliton limit, the system described
the Lagrangian ~1! possesses kink solutionsf(x2nt)
[f(s), verifying the differential equation

1

2 S df

dsD 2

5
g2

d0
2 V~f!, d05c0 /v0 , g5~12n2/c0

2!21/2,

~5!

whered0 is the characteristic length scale of the system,g is
the Lorentz contraction factor, andx is the continuum space
variable withx5 ia, while n is the velocity. From Eq.~5!,
one obtains two families of implicit kink solutions@10#:

gs

ds
~1! 56sgn~f2p!H ~12a2!1/2

a
tan21F ~12a2!1/2

a21tan2~f/2!G
1/2

1tanh21F a2

a21tan2~f/2!G
1/2J , ~6a!

with ds
(1)5d0a and for21,r<0,

gs

ds
~2! 56sgn~p2f!H ~12a2!1/2 tanh21F 12a2

11a2 tan2~f/2!G
1/2

2tanh21F 1

11a2 tan2~f/2!G
1/2J , ~6b!

with ds
(2)5d0 /a and for 0<r ,1, where a5(12ur u)/(1

1ur u). The sign~1! corresponds to the kink solution whil
the sign~2! corresponds to the antikink solution. The kin
rest energy (Es) and rest mass (Ms) are given by

Es
~, !58Ac0v0G~, !~r ! and Ms

~, !5
8A

d0
G~, !~r !, ,51,2,

~7!

with

G~1!~r !5~12a2!1/2 tan21F ~12a2!1/2

a G ,
G~2!~r !5a~12a2!1/2 tanh21@~12a2!1/2#, ~8!

where the superscripts ‘‘~1!’’ and ‘‘ ~2!’’ stand for 21,r
<0 and 0<r ,1, respectively. The parametersds

( l )(,51,2)
are the ‘‘pseudo-kink-width’’@10#. For r 50, Eqs.~6! reduce
to the usual sG kink. Whenr tends to 1,ds

(2) tends to infinity.
On the other hand, whenr decreases and tends to21, ds

(1)

tends to zero. Thus, the kink extension is not only de
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mined by the characteristic length scaled, but also by the
curvature of the minima of the potential@19#. It is important
to note that whenr tends to21, even if the neighboring
particles are sufficiently closed~strong coupling!, the kink
extension could be just a few lattice spacings and, con
quently, the discreteness effects on soliton dynamics
thermodynamics properties could not be neglected@20#.

III. CALCULATION OF THE PINNING POTENTIAL

In order to analyze the influence of the lattice effects
the kink dynamics, we use the ansatzf i5f„ia2X(t)…
[f i„X(t)…, where the dynamical variableX(t) represents
the position of the center of mass of the kink.f i„X(t)… are
the continuum soliton solutions@Eq. ~6!# at the sitei and the
discrete corrections or dressing of the continuum solitons
the radiated phonons emitted by solitons during their pro
gation are assumed to be small. This approximation lim
the range of validity only ford0.a. In the continuum limit,
X(t) is proportional to time@e.g.,X(t)5vt, wherev is the
kink velocity# but this is not the case in the discrete lattic
where the translational invariance of kink motion is brok
by the periodic variation of the kink parameter.

Substitutingf i„X(t)… into the Lagrangian~1!, we obtain
the reduced form

L5 1
2 MsẊ

22U~X!, ~9!

whereMs defined by

Ms5Aa(
i

S ]f i

]X D 2

~10!

is the effective mass of the kink. The potential energyU(X)
depends onX through f i„X(t)…. With the use of the con-
tinuum limit and the differential equation~5!, it appears that
the potential energyU(X) is given by

U~X!52Aav0
2(

i
V@f i~X!#, ~11!

whereV(f) is the underlying potential of the system defin
in Eq. ~4!. Also the effective kink mass can be rewritten in
more suggestive form as

Ms5
2Aa

d0
2 (

i
V@f i~X!#. ~12!

The numerical computation of these two expressio
shows a periodic variation withX, with period proportional
to the lattice constanta. According to this result, we use th
Fourier series expansion to write

(
i

V@f i~X!#5
A0

2
1 (

n51

` Fan cosS 2pnX

a D
1bn sinS 2pnX

a D G ~13!

with
6-2
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an5
2

a E0

a

(
i

V@f i~X!#cosS 2pnX

a DdX,

~14!

bn5
2

a E0

a

(
i

V@f i~X!#sinS 2pnX

a DdX.

This summation~13! can be rewritten as

(
i

V@f i~X!#5
A0

2
1 (

n51

`

uÃnucosS 2pnX

a
1wnD , ~15!

wherean andbn are the real and imaginary parts ofÃn with
modulusuÃnu. HenceÃn is given by

Ãn5an1 jbn5
2

a E0

a

(
i 51

N

V@f i~X!#e2~2pXn/a! jdX.

~16a!

By using the transformationZ5 ia2X, Eq. ~16a! becomes

Ãn52
2

a (
i 52~N21!/2

~N21!/2 E
ia

~ i 21!a
V@f~Z!#ej ~2pZn/a!dZ

52
2

a H E
2~N21!/221

~N21!/2
1E

2~N21!/2

~N21!/211
1¯

1E
~N21!/221

~N21!/2 J V@f~Z!#ej ~2pZn/a!dZ, ~16b!

which reduces to~with N→`)

Ãn5
2

a E2`

1`

dZ V@f~Z!#ej ~2pnZ/a!. ~17a!

Also wn is defined by

wn5tan21S 2bn

an
D5arg~Ãn!. ~17b!
th
s

01660
It appears from Eqs.~13!, ~17!, and~22! that the problem
of the calculation of the potential energy and the kink ma
in the discrete system is reduced to that of the integration
the quantity

Qn5E
2`

1`

dZ V@f~Z!#exp~ j 2pnZ/a! ~18!

sinceÃn5(2/a)Qn . We can evaluate it either by the saddl
point method or by knowing the residues of the integra
associated with poles located in the above half-plane s
V@f(Z)# tends to zero whenZ tends to6`. When one relies
upon the residue method, the problem is to find the singu
points of the functionV@f(Z)#. These singular points
which in this case are branch points, are located at

fs156 j ln@~12a!/~11a!#12mp,
~19!

fs256 j ln@~12a!/~11a!#1~2m11!p,

wherem is an integer. These points correspond in thez plane
to

Zm
~2!5l~112m! and Zm

~1!5~l11 j l2!~112m!
~20a!

with

l15~d0p/2!~12a2!1/2, l25~d0p/2!a,

l5~d0p/2!a/@11~12a2!1/2# ~20b!

obtained by substituting Eqs.~19! into the implicit kink so-
lution ~6!. From the residues theorem

Qn5E
2`

1`

F~Z!dZ52p j (
m50

`

R~Zm ,F !, ~21a!

where R(Zm ,F) is the residue of the functionF(Z) at Z
5Zm , we obtain after some lengthy calculation
Qn
~1!5~4p2d0

2n/a!
sinh~2pnl2 /a!cos~2pnl1 /a!1 j sin~2pnl1 /a!cosh~2pnl2 /a!

sinh2~2pnl2 /a!1sin2~2pnl1 /a!
G~1!~r !, ~21b!
.
Qn
~2!5~4p2d0

2n/a!
a

@11~12a2!1/2#sinh~2pnl/a!
G~2!~r !,

~21c!

where G(r )
(1) are the numerical constants depending on

potential defined in Eq.~8!. The fundamental harmonic i
readily calculated and yields

A0
~, !5

8d0

a
G~e!~r !, ,51,2. ~22!
e

With the help of Eqs.~11!, ~12!, ~15!, and~16!, the poten-
tial energy and the kink effective mass can be evaluated

For example, substitutingÃn into Eq. ~15! and the result-
ing equation~15! into Eq. ~11! yields the potential energy

U ~, !~X!5Es
~, !1 (

n51

`

Un
~, ! cosS 2pnX

a
1wn

~, !D ~23!

with
6-3
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Un
~1!5

16p2d0
2v0

2A

a

nG~1!~r !

@sinh2~2pnl2 /a!1sin2~2pnl1 /a!#1/2,

~24a!

tanwn
~1!5

tan~2pnl1 /a!

tanh~2pnl2 /a!
, ~24b!

and

Un
~2!5

16p2Ad0
2v0

2

a

naG~2!~r !

@11~12a2!1/2#sinh~2pnl/a!
,

~24c!

tanwn
~2!50. ~24d!

Similarly, the substitution of Eq.~15! into Eq. ~12! yields
the effective kink mass:

Ms
~, !~X!5Ms

~, !1 (
n51

`

Msn
~, ! cosS 2pnX

a
1wn

~, !D ~25!

with

Msn
~1!5

16p2A

a

naG~1!~r !

@sinh2~2pl2n/a!1sin2~2pl1n/a!#1/2,

~26a!

Msn
~2!5

16p2A

a

naG~2!~r !

@11~12a2!1/2#sinh~2pnl/a!
. ~26b!

The parametersMs
(,) and Es

(,) that appear in Eqs.~23! and
~25! are the kink rest mass and kink rest energy in the c
tinuum limit @10#, respectively, defined by Eq.~7!. In this
limit, these quantities are constant parameters. Howeve
the discrete lattices, these parameters depend on the
position in the lattice. Therefore, it appears that the disc
lattice is the source of periodic modulation of kink para
eters ~mass and energy! as the kink propagates along th
lattice. As a consequence, a kink in the discrete lattice h
periodically varying effective mass and moves in a perio
potential energy.

Equation~23! represents the total potential energy of t
discrete system and can be regarded as the Peierls-Na
energy, while Eq.~25! represents the effective kink mas
whenr .0, and the phasewn

(2) in the argument of the cosin
term is zero. Due to the presence of the hyperbolic sine fu
tion in the denominator ofUn

(2) , the harmonics of secon
order and more are negligible. Then,U (,)(X) reduces to

U ~2!~X!5Es
~2!1U1

~2! cosS 2pX

a D . ~27!

Also, the kink effective mass has the same behavior,

Ms
~2!~X!5Ms

~2!1Ms1
~2! cosS 2pX

a D . ~28!
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However, sinceMs
(2)@Msl

(2) , the kink massMs
(2)(X) is re-

duced to its fundamental harmonicMs
(2) . When r ,0, one

notes the presence of the sine term in theMn
(1) expression

and the phasewn
(1) in the cosine term of both the potentia

U (1)(X) and the massMn
(1)(X). It appears that, in the system

with large length scale (d0@a) and/or for the substrate po
tential close to the sine-Gordon one (r→0), the hyperbolic
sine function in the denominator ofUn

(1) dominates the sine
function, thus the harmonic of order more than 2 is neg
gible. Hence

U ~1!~X!5Es
~1!1U1

~1! cos~2pX/a1w1
~1!! ~29!

and the kink mass is reduced to its fundamental harmo
Ms

(1) ~since Ms
(1)@Ms1

(1)). However, when the system i
highly discrete (d0 /a<1) and/or for the substrate potenti
with a very sharp bottom or flat top (r→21), the hyperbolic
sine function in the denominator ofUn

(1) tends to zero and
the sine function predominates. In this case, the harmoni
order more than 1 dominates the harmonic of order 1. Th
the potential presents more than one minima within one u
cell. Figure 1 illustrates this behavior and shows example
the variations of the PN potentialU(X) for different values
of d. The PN potential~23! can no longer be satisfactoril
described by the approximate equations~27! and ~29!.

Next we consider the pinning barrier. Note that the pe
odic modulation of the potentialU (,)(X) as the kink propa-
gates along the lattice is the source of the periodic pinn
potential experienced by this kink. The amplitude of th
potential energy is the well-known PN barrierEPN @1#. In the
case of a substrate potential with a flat bottom (r .0), this
barrier can be accurately deduced from Eq.~27!. It yields

EPN
~2!52U1

~2! . ~30!

When r ,0, but still greater than20.5 and/or the length
scaled0.a ~weak discrete system!, the PN barrier is also
given by

EPN
~1!52U1

~1! , ~31!

which is deduced from Eq.~29!. When the kink kinetic en-
ergy is not sufficient, it can be trapped by the PN potent
after which it oscillates in the PN equilibrium site with th
PN frequency with PN defined as follows:

FIG. 1. Pinning potentialU(X)/U0 in dimensionless unit (U0

5Ac0v0) as a function ofX/a in two unit cells forr 520.7 and
different values of the discretization parameterd0 /a.
6-4



ig
N

e
s
nt

m

o

ive
cal

ing
out

ng
t is
atial
rrie

can
r.
g

an
ma
e

fect
ete

is
tial,
ter
ten-
ess
Eq.

,

o

and
he
the
e

we
kink

ess
em
een
not

ate

m-
ion
ay
ate
r

to

q

-
-

ANALYTICAL CALCULATION OF THE PEIERLS- . . . PHYSICAL REVIEW E 66, 016606 ~2002!
~vPN
~2!!25

4p2U1
~2!

a2Ms
~2! . ~32!

Moreover, whenr ,0.5 and/ord0<a ~highly discrete sys-
tem!, the PN barrier is given by

EPN
~, !5maxbU ~, !~X!c2minbU ~, !~X!c, ~33!

where max@U(,)(X)# and min@U(,)(X)# are the maximum and
the minimum values ofU (,)(X) whenX varies from zero to
a, respectively. Here, one must take into account the h
harmonic of the PN potential in the calculation of the P
potential. Figure 2 shows the variations ofEPN as a function
of the deformable parameterr, which determines the shap
of the substrate potential. It appears that the discretenes
fects strongly depend on the shape of the substrate pote
They are minimal for the sine-Gordon profile (r 50), but
increase rapidly when the shape of the potential beco
more abrupt~either with a sharp or flat top!. It is important to
note that forr .0, the spatial extension of the kink isds

(2)

5d0 /a so that, whenr→1, very large kinks are needed t
avoid discreteness effects.

FIG. 2. Variation of the pinning barrierEPN, in eV, with the
parameter of hydrogen adsorbed on a tungsten surface (a53 Å,
m51 uma, c055208 m/s,v05331013 rd/s; see Ref.@17#!, as a
function of @dashed curve is the truncated result obtained from E
~30! and ~31! while the full curve is the result of Eq.~33!# ~a!
deformable parameterr with d0 /a51.5, ~b! dimensionless discreti
zation parameterd0 /a for three values of deformable param
eter: ~1! r 520.7; ~2! r 50; and~3! r 510.7.
01660
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We now turn our attention to a qualitative and quantitat
comparison of our theoretical results with the numeri
simulations of Peyrard and Remoissenet@7#. In fact, Peyrard
and Remoissenet have calculated numerically the pinn
potential and pinning barrier in the RP model and pointed
the following.

First, the shape of the pinning potential by the movi
kink depends on the shape of the one-site potential; i
sinusoidal in the case of the sG potential shape with a sp
periodicity equal to the lattice constant as assumed by Cu
et al. @20#, and may exhibit two minima within a unit cell in
the case of the RP potential. This aspect of their results
be interpreted by Eq.~23!. Figure 1 illustrates this behavio
However, Fig. 1 shows that the periodicicity of the pinnin
potential is still equal to the lattice constant. This failure c
be justified by the fact that the appearance of two mini
with equal magnitude within a unit cell is obtained in th
highly discrete system. So, in the high discreteness ef
regime, we do not have analytical solutions for the discr
RP model.

Second, the magnitude of the discreteness effects
strongly dependent on the shape of the substrate poten
their variation as a function of the discretization parame
d0 is also very sensitive to the shape of the substrate po
tial, and that very large kink may be pinned by discreten
effects. Here also, these results can be interpreted by
~23!. Figure 2 is an example of this illustration.

Finally, there is no oscillation in the pinning barrierEPN,
where r>0, and asd0 increasesEPN decreases. However
whenr ,0, there appears an oscillation inEPN. For this, our
result@see Eq.~21!# shows an oscillatory behavior ofEPN as
a function of d0 with a pseudoperiod proportional t
2a/pA12a252a(11ur u)/pA4ur u.

Hence, substantial aspects of the results of Peyrard
Remoissenet@7# have been obtained. However, due to t
fact that we have neglected the dressing correction of
kink profile in the lattice, the result is limited in the rang
where the continuum soliton profile can be obtained. If
assume that the discreteness parameter is given by the
width d(1), for negative values ofr, the range of validity of
our resultd(1).a yields ur u,@(d0 /a)21#/@(d0 /a)11#.

IV. CONCLUSION

In summary, we have studied analytically the discreten
effects on the kink dynamics of a one-dimensional syst
with the RP substrate potential. The PN potential has b
derived. It turns out that the discreteness effect depends
only on the kink width, but also on the shape of the substr
potential. In the substrate with a sharp bottom (r .0), the
pinning barrier can be accurately approximated by the a
plitude of the first harmonic of the Fourier series expans
of the pinning potential, but the shape of this potential m
deviate from the sinusoidal one. Also, when the substr
potential has a flat bottom with deformable parameter
,0.5, this approximation is still valid. However, whenr
,0.5 this approximation may fail, and one should take in

s.
6-5
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account the higher harmonics in the analytical expressio
the PN potential. The higher harmonic terms may contrib
significantly to increase the value of the PN barrier. Desp
the significant results obtained in this paper, it would
B
,

s
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interesting and more accurate to pursue the study of the
creteness effects by taking into account the dressing of
kink. The account of this problem leads to noticeable mo
fication of the kink profile and dynamics.
v.
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